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Abstract 

Bitcoin price exhibits patterns predictable on its historical pasts. We adopt ARIMA(auto), ARIMA(fix) 

models and the Holt-Winters filter (HWF) with trend plus additive seasonal HWF (𝛾[0,1]), and no 

seasonality HWF (𝛾[False]) to forecast the price of Bitcoin under three datasets–Actual (observed), 

Polynomial (fitted) and STL-Trend (fitted). We apply daily time-series from 1/09/2014–28/12/2020, 

and establish 18 models to forecast the price of Bitcoin. The results show that HWF (𝛾[0,1]) with lower 

limit fitted on STL-Trend provides the best prediction on the first training-sample, while ARIMA(fix) 

fitted on actual data outperform in the second training-set with the smallest Mean-Absolute-Error 

(MAE). The training-set forecast performance of the ARIMA(fix) for the actual function provides better 

performance with the least MAE. The HWF is appropriate for prediction of the daily Bitcoin price with 

the generalise STL-Trend function, but ARIMA(fix) is more accurate for the actual series. 

 

Keywords: Bitcoin, ARIMA, Holt-Winters, Mean Absolute Error 

 

Introduction 

The cryptocurrency ‘Bitcoin (BTC)’ has generated consistent attention in recent years. BTC has global 

influences, leading to change in payment methods, financial assets and monetary policies (Pabuçcu, 

Ongan & Ongan, 2020). The virtual currency shares attribute as fiat money and speculative assets (Baur, 

Hong & Lee, 2018). There are concerns by investors, traders and researchers about the pattern of the 

daily price movement. The highly volatile digital currency is associated with significant price swings 

in hourly, daily and long-term valuations since its invention (Hung, Liu & Yang, 2020). Bitcoin price 

rises by 1000% from $0.008 in 12 July to $0.08 in 17 July, 2010. It becomes parity with US dollars on 

Feb 15, 2011 and reaches a landmark high of above $19,500 on 18 December, 2017. Since Mid-
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December 2020, the price has experienced a meteoric rise fluctuation between $24,000 and $27,000 

which is reported to be above 40% gains from its 2017 peak. 

The sporadic volatility of Bitcoin price has prompted attempts to forecast its daily future price 

(Munim, Shakil & Alon, 2019; Chen, Li & Sun, 2020). The price of Bitcoin has exhibited patterns 

which is largely predictable upon its historical past. Developing a suitable and accurate forecast model 

for next-day forecast of its price may increase traders’ returns and trading activities (Munim et al., 

2019). In addition, the fact that Bitcoin is continuously traded even less stronger currencies makes 

prediction of its price inevitable. The information asymmetric, dynamic behaviours of miners and 

uncertainties in the cryptocurrency markets make forecasting the price of Bitcoin a challenging task 

(Kliber et al., 2019). The choice of the forecasting model can have a significant effect on the 

performance of Bitcoin and the make the cryptocurrency market more efficient (Caporale, Gil-Alana, 

& Plastun, 2018). This paper aims to find a model that enables accurate forecast of daily Bitcoin price. 

We establish forecast interval that can guide market participants in the speculation of Bitcoin 

price. We extend the frontier of research in two ways. First, available studies (McNally, Roche & Caton, 

2018; Munim et al., 2019; Mudassir et al., 2020) forecast Bitcoin price with actual time-series. There 

is need for generalise function data to be applied for empirical analysis, particularly for forecasting 

rather than actual data with which we construct the general function. Hence, our study establishes 

predictions predicated upon two generalisation of the daily Bitcoin price time-series. The investigations 

allow us to partition the dataset into training and testing fragments before the estimation of the 

predictive models. Second, we estimate, validate our models and explain which one is the best predictor 

for the Bitcoin price with more recent method of summing the absolute mean errors and obtain 18 

competing models with which we decide the best performance. The rest of the study is organized as 

follows: Section two is the literature review, section three describes data and methodology, section four 

presents results and section five concludes. 

 

Prior Review 

Generally, the literature on Bitcoin and other cryptocurrencies are quite huge. However, only a few 

consider forecasting out-of-sample property of Bitcoin prices. Some studies focus on Bitcoin price 

formation and clustering (Urquhart, 2018), factors that explain and predict of Bitcoin price (Jang & Lee, 

2018; Guizani & Nafti, 2019; Hung et al., 2020; Kraaijeveld & De-Smedt, 2020; Gbadebo et al., 2021; 

Jaquart, Dann & Weinhardt, 2021), detection of speculative bubbles in Bitcoin (Corbet, Lucey, & 

Yarovaya, 2018), time-of-day periodicities trading of Bitcoin (Baur, Cahill, Godfrey, & Liu, 2019), the 

estimation of  price volatility (Troster et al., 2019; Hung et al., 2020), the examination of Bitcoin 

exchange and crypto-finance (Goutte, Guesmi & Saadi, 2019; Jeon, Samarbakhsh, & Hewitt, 2020).  

In the context of factors that predicts Bitcoin prices, Jang and Lee (2018) adopt the Bayesian 

ANNs as well as benchmark linear regression to predict the daily Bitcoin price from September 2011 

to August 2017. They examine the influence of blockchain information (block size, trading volume, 

transactions per block, number of transactions, hash rate, and miner’s revenue), alongside asset and 

commodity prices (stock, oil, CBOE volatility index [VIX], gold). The Bayesian artificial neural 

networks (ANN) outperform the linear and nonlinear benchmark models in predicting the daily Bitcoin 

log-price time-series. Kraaijeveld and De-Smedt (2020) use bivariate causality to determine how 

Twitter sentiment predict prices of major cryptocurrencies (Bitcoin and other strong alternative coins 

as Ethereum, XRP, EOS, Bitcoin Cash, Litecoin, Stellar, Cardano and TRON). The paper finds that 

Twitter sentiment have low predictive power for Bitcoin, Litecoin and Bitcoin Cash returns. The 

outcome is connected to notable observation that around 14% of the tweets are from automated Bot 

platforms. Gbadebo, et al., (2021) use Autoregressive Distributed Lag (ARDL) and cointegration 

bounds testing to verify how the volatility of Bitcoin price responds to the overall cryptocurrency market 

capitalisation, equity index, Bitcoin transaction volume and Google search. The paper confirms 

existence of long-run cointegration. The study shows that market fundamentals, rather than information, 

drive volatility of Bitcoin price. Except the equity index, other variables are confirmed to positively 

explain Bitcoin price volatility. Jaquart et al. (2021) employ machine learning ANN, long short-term 

memory (LSTM), random forests (RF) and gradient boosting to analyse how indicators, such as 

technical, blockchain, sentiment and returns of traditional asset (stock, VIX, gold), explain minutes to 
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hours high-frequency Bitcoin prices forecast, during March 4, 2019 to December 10, 2019. The study 

show that the quantile established long-short trading strategy generates about 39% returns. 

Some studies compare benchmarks regression model with different deep and machine learning 

(ML) estimations (Roche & Caton, 2018; Adcock & Gradojevic, 2019; Mallqui & Fernandes, 2019; 

Munim et al., 2019; Rizwan, Narejo & Javed, 2019; Aygün & Günay Kabakçı, 2021; Mudassir et al., 

2020; Basher & Sadorsky, 2022; Ye et al., 2022) to forecast bitcoin prices. McNally at a. (2018) employ 

both Bayesian recurrent neural network (RNN) and LSTM to forecast the daily movement in the price 

of Bitcoin. With the LSTM forecast the high performance with the classification accuracy achieved was 

approximately 52% with the root mean squared error (RMSE) of 8%. The paper presents that 

forecasting with nonlinear deep learning models outperformed the autoregressive integrated moving 

average (ARIMA) model. Velankar, Valecha and Maji (2018) use the generalized linear (GLM) model 

and Bayesian regression to forecast the daily average price change signals and uncover a prediction 

accuracy rate of 51% with the GLM. Adcock and Gradojevic (2019) use the feed-forward neural 

networks (FNN), GARCH-M, ARIMAX, random walk and multiple linear regression to predict Bitcoin 

prices. They examine how 50-200 days moving averages (MA) of bitcoin volume and VIX affect its 

prices, which shows little significance on its forecasts. The FNN indicates the highest accurate density 

and point forecasts relative to other models. Demir et al. (2019) predict the price of Bitcoin using 

methods such as long LSTM, NB, as well as the nearest neighbour technique. These methods achieved 

prediction accuracy between 81.2% and 97.2%. Mallqui and Fernandes (2019) employ artificial neural 

network (ANN) and support vector machines (SVM) algorithms in regression models to forecast the 

maximum, minimum and closing Bitcoin prices. He concludes that SVM algorithm outperformed the 

ANN with lowest mean absolute percentage error (MAPE) of 1.58%.  

Munim et al. (2019) use ARIMA and neural network autoregression (NNAR) tools to forecast 

daily Bitcoin price from 1 January, 2012 to 4 October, 2018. They adopt the static forecast and predict 

next day Bitcoin price with and without model re-estimation of the prediction model for each step. They 

split the data into two- training and test sets. For the first training set, the NNAR outperforms the 

ARIMA, but for the second set, the ARIMA outperforms NNAR. The ARIMA with re-estimation at 

each step outperforms NNAR in the two test sets periods. Rizwan et al. (2019) initiates the deep learning 

(Bayesian ANN, RNN and LSTM) networks to complete bitcoin price forecasts. Both indicates forecast 

accuracy of 52% and 8%, and outperforms the ARIMA and benchmark linear regression poor 

predictions. Subsequent, the Gated Recurrent Unit (GRU) model are applied to forecast the price. Both 

RNN and LSTM show GPU that beat those implemented by 94.70% for the training time.  

A number of studies employ only ML approach. Mudassir et al (2020) apply regression models 

and high-performance ML classification for forecasting the movements daily, weekly, monthly and 

quarterly Bitcoin price. The feasible and high-performance with classification models scores about 65% 

accuracy for daily forecast and between 62–64% for others predictions. The error percentage is as low 

as 1.44% for the daily price forecast, while it ranges from 2.88 to 4.10% for other frequency horizons. 

Chen et al. (2020) verifies statistical models (ARIMA, LDA, Logit, and QDA) and machine learning 

(SVM, RF, XGB, and LSTM) methods to forecast 5-minute intervals (high frequency) Bitcoin prices, 

during July 17, 2017 to January 17, 2018. The analysis completed indicates forecast accuracy achieve 

65% and 66% for the ML algorithms and statistical methods, respectively. Lahmiri & Bekiros (2020) 

implement the 3 ML techniques such as the SVM, Gaussian Poisson regressions (GRP), and 3 ANN 

(FFNN, Bayesian regularization, BRNN, and radial basis function networks, RBFNN) to predict price 

of Bitcoin, Ripple and Digital Cash. The entropy evaluation train and test sets identify high levels of 

stochasticity, long memory traits and topological complexity. The performance metrics shows optimal 

estimates for the SVR, GRP and FFNN through the Bayesian optimization, with the BRNN 

outperforming in forecast accuracy, and its convergence is remarkably fast and unhindered. Pabuccu et 

al. (2020) use SVM, ANN, Naïve Bayes (NB), RF, and logit model to predict Bitcoin prices for both 

continuous (price returns) and discrete (price direction) data. The continuous sample indicate that the 

RF is the most accurate, while NB is least accurate. The ANN shows highest predictive accuracy, 

whereas the NB is least for the price direction. 

 Aygün and Günay Kabakçı (2021) examine the MA, ARIMA, and ML algorithms (ANN, 

RNN) and convolutional neural network (CNN) of Bitcoin price predictions. Based on the MAE, MSE, 

and MAPE, RNN yields better results than other methods. Hamayel and Owda (2021) apply three 
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machine learning methods (LSTM, bi-LSTM and GRU to predict Bitcoin, Litecoin, and Ethereum, 

during from January 1, 2018 to June 30, 2021. The GRU has the smallest RMSE and MAPE, hence, 

outperformed other algorithms. RMSE is smaller for Litecoin, Ethereum and Bitcoin accordingly. Ye 

et al. (2022) proposes an ensemble ML model to forecast Bitcoin’s next 30 minutes prices. Using the 

technical indicators, sentiment indexes and Bitcoin prices, they amalgamate LSTM and GRU with 

stacking ensemble system during September 2017 to January 2021. The results display that the near-

real time forecast with MAE of 88.74% exhibit better performance than the daily forecasts. Basher and 

Sadorsky (2022) apply machine learning (random forests and bagging) classifiers and typical logit 

models to predict Bitcoin prices. The paper finds that the random forests predict the Bitcoin price with 

much accuracy than the logit models. The accuracy for the random forests and both bagging classifiers 

range between 75% and 80% for the 5-day forecasts, and above 85% for 10 to 20 days prediction.  

Some studies (Atsalakis et al., 2019; Kundra et al., 2022) combine different statistical or 

machine learnings tools to develop hybrid methods to predict Bitcoin price. Atsalakis et al. (2019) 

propose a hybrid Neuro-Fuzzy controller (PATSOS) to improve the accuracy of models that predict the 

direction of change for daily Bitcoin price. The evaluation identifies that PATSOS is more robust and 

outperforms alternatively advanced two computational intelligence models, one developed from a 

simpler Neuro-fuzzy, and the other from ANN. The simulation shows that Bitcoin returns from trading 

with signals of PATSOS is 71.21% higher than returns obtained from naïve or simple buy-and-hold 

strategy. Kundra et al. (2022) computational intelligence to develop a black widow updated rain 

optimization (BWURO) algorithm. BWURO integrates CNN and bidirectional long/short-term 

memory (BiLSTM) to form an optimal hybrid model of two-level ensemble classifier to examine the 

volatility of bitcoin prices. When evaluated, the result shows that the mean absolute error (MAE) of 

BWURO model is approximately 0.023, and it is 59.8%, 62.14%, 64.08%, and 72.2%, better than other 

hybrid as BWURO+Bi-LSTM, NN+BWURO, SVM+BWURO, and CNN+BWURO, respectively. 

 

Methods 

Pre-test  

We start the estimation process by first checking the stochastic characterisation of the Bitcoin price 

time-series, denoted 𝑦𝑡. Munim et al. (2019) applies both Augmented-Dickey-Fuller (ADF) and Philip-

Perron (PP) on Bitcoin price and its log-transformation to confirm that the data is non-stationarity. We 

apply the Elliott–Rothenberg–Stock (ERS, 1996)’s DF-GLS and Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS, 1992) tests.  

The DF-GLS test verifies stationarity by assuming that a detrended 𝑦𝑡 , denoted  𝑦𝑡
𝑑 = 𝑦t −

�̂�0(𝛼) − �̂�1(𝛼)𝑡 [in which the intercept �̂�0(𝛼) and trend �̂�1(𝛼) are obtained by regressing 𝑑(𝑦𝑡|𝛼) on 

𝑑(1|𝛼) and 𝑑(𝑡|𝛼)] follows a data generating process as: 

 𝑦𝑡
𝑑 = 𝜗𝑦𝑡−1

𝑑 + ∑ ∆
𝑝−1
𝑖=1 𝑦𝑡−𝑖

𝑑 + 𝑎𝑡               (1) 

The null 𝜗 = 1  (non-stationarity) tested against the alternative 𝜗 = 𝜗 < 1  is rejected, if the test 

statistics, 𝜏𝜏 > 𝐸𝑅𝑆𝛼  critical value. The KPSS assumes that 𝑦𝑡 follows ARlMA(0,1,1) process: 

 ∆𝑦𝑡 = 𝜃0 + 𝑎𝑡 − 𝜃𝑎𝑡 − 1                (2)  

The test uses a test statistic, 𝜏𝜂 = 𝑇−2 ∑ �̂�t
2𝑇

1 /�̂�ℓ
2 ; 𝑒𝑡 = 𝑦𝑡 − �̂�0 − �̂�1𝑡  and �̂�, = ∑ 𝑒𝑖

t
𝑖=1 .  �̂�ℓ

2  is an 

estimator of the variance, 𝜎2. The null, 𝜗 = 1, 𝜏𝜂 = 0 (implying 𝑦𝑡  is stationary) tested against the 

alternative 𝜏𝜂 > 0 is rejected, if 𝜏𝜂 > 𝐾𝑃𝑆𝑆𝛼 critical value. 

 

Generalise functions of the actual data 

Here, we establish two generalised − a Polynomial and an STL (Seasonal Trend decomposition 

using Loess) function of the Actual data. The polynomial function (3) is a simple generalisation of 𝑦𝑡 

as time trends. The function fits 𝑦𝑡 on time (𝑇): 

𝑦𝑡  = 𝜓0 +  𝜓1𝑇 +  𝜓1𝑇2                                (3) 

With its fitted value given as, �̂�𝑝 =  𝑦𝑡  − ∑ �̂�𝑖𝑇𝑖2
𝑖=0 . 

We adopt the STL to decompose the 𝑦𝑡 . The STL splits 𝑦𝑡  into three - trend, seasonal and random 

effects. The cycle identification is done with spectral analysis which shows the characteristics of 

oscillations of different wave lengths. The spectrum of a process 𝑦𝑡  with an autocorrelation function 

(𝜔𝜏) where, ∑ |𝑛
𝜏 𝜔𝜏| < ∞ is: 
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𝑦(𝜔𝜏) = 𝜔 + 2 ∑ 𝜔𝜏
∞
𝜏=1 cos(2𝜋𝜔𝜏)                                                               (4)   

the function computes the correlation between data at time t, 𝑦𝑡 and data at time τ steps before, 𝑦𝜏. We 

swift the time-series components of 𝑦𝑡, and obtain the Trend component, �̂�𝑇.  

 

The forecast models 

The literature identifies two approaches for time-series forecasting. First is the model-based approach 

which uses a function of explanatory variables to forecast the future value of the dependent variable. 

The result is largely limited by some prior assumptions made on the distribution of data. These 

assumptions may have effects on forecast performance (Hyndman & Athanasopoulos, 2018). Aside, 

since Bitcoin lacks correlation with other financial assets (Chowdhury & Mendelson, 2014), the 

prediction of Bitcoin price on some economic and financial indicators is still ambiguous (Guizani & 

Nafti, 2019; Hung et al., 2020; Kraaijeveld & De-Smedt, 2020; Gbadebo et al., 2021). A second 

approach −  the univariate or pure model approach − employs the historical data of a time-series. This 

methods absolve any defects from prior assumptions on non-linear relationships, as autocorrelation and 

non-stationarity. Some studies confirms the existence of correlation amongst past and present values of 

Bitcoin price (Caporale et al., 2018). We employ two univariate method: a seasonal ARIMA model and 

an exponential smoothing Holt-Winters filter (HWF). 

First is the ARIMA model which is a Box-Jenkins (1976) approach with extensive empirical 

applications. Typically, an ARIMA model has an autoregressive [AR(p)] and a moving average 

[MA(q)] components with three parameters (p, d, q), often denoted as ARIMA (p, d, q) , where the p is 

the order of the AR component, d is the number of differencing required to attain a stationary [ARMA(p, 

q)] model and q is the order of the MA component. We define, 𝐷1 = (𝑦t − 𝑦t−1), 𝐷2 = (𝑦t − 𝑦t−1) −
 (𝑦t−1 − 𝑦t−2) , …, 𝐷𝑑 =  (𝑦t − 𝑦t−1) − (𝑦t−1 − 𝑦𝑡−𝑑)  as first, second, …, and d differencing, 

respectively: 

    𝑦t =  𝜇 

+ 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 

+ 𝛿1𝜀𝑡−1 + 𝛿2𝜀𝑡−2 + ⋯ + 𝛿q𝜀𝑡−𝑞                                                     (5) 

+ 𝑑1𝐷𝑡−1 + 𝑑2𝐷𝑡−2 … 𝑑𝑑𝐷𝑡−𝑑 + 𝜀𝑡 

𝜇 is the intercept (drift or mean of the time series, which is often zero), and the model has a 

variance, 𝜎2. 𝑦𝑡−𝑖 (i = 1, …p) is previous time series periods until lag 𝑝, 𝜃𝑖 is the parameter for 𝑦𝑡−𝑖 , 𝜀𝑡 

is the error term in time 𝑡, 𝜀𝑡−𝑗 is the error term of all previous periods until lag 𝑞 and 𝛿𝑗 (j = 1, …q) is 

the parameter for 𝜀𝑡−𝑗. We find the order on automatic iteration [ARIMA (auto)], select a fix parameters 

for ARIMA (fix), estimate the variance, 𝜎2 (Table 3), compute the MAE (Table 4) and present plots for 

h-step-ahead predictions (Fig.4a – 4g). Some studies have applied the ARIMA for Bitcoin price 

prediction (McNally et al., 2018; Munim et al., 2019). 

Second is the Holt-Winters filter (HWF) attributed to Holt (1957) and Winters (1960). The 

model is an extension of exponential smoothing model extensively apply in time-series forecasting. It 

is a typical deterministic model containing a trend, seasonal fluctuations and stochastic error 

components. The HWF computes a smoothed series �̂�𝑡+ℎ|𝑡  with recursive schemes of updating 

equations which allows for an iterative computation of an h-step-ahead predictions based on two 

algorithms – an additive and a multiplicative protocol (Hyndman & Athanasopoulos 2018). For this 

study, we adopt the additive method which parameters are defined: 

𝑝𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑘) + (1 − 𝛼)(𝑝𝑡−1 + 𝑏𝑡−1) 

𝑏𝑡 = 𝛽∗(𝑝𝑡 − 𝑝𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1                                                                (6) 

s𝑡 = 𝛾(𝑦𝑡 − 𝑝𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾) 𝑠𝑡−𝑘   

�̂�𝑡+ℎ|𝑡 = 𝑝𝑡 + ℎ𝑏𝑡 + 𝑠𝑡−𝑘+ℎ𝑘
+                                                                            (7) 

The equations for the time series level (𝑝𝑡), trend (𝑏𝑡), and seasonality (s𝑡) depend on three 

The algorithm weights or smoothing parameters (𝛼, 𝛽, and 𝛾) belonging to close interval [0, 1] is 

estimated for 𝑦𝑡  with intrinsic assumption that older data have lesser power to the forecasted data 

relative to current ones. Equation (7) is the forecast (�̂�𝑡+ℎ|𝑡) at time 𝑡 + ℎ given data up to time 𝑡, and 

the constant 𝑘 is the seasonality. The Estimation of , 𝛽, and 𝛾 is through the minimization of randomly 

chosen measures of errors (e.g., the sum of absolute values of the residuals of the model). We present 

prediction intervals for the HWF with trend plus additive seasonal HWF (𝛾[0,1]), as well as with trend 
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but no seasonal component HWF (𝛾[False]). We estimate , 𝛽, and 𝛾 (Table 3), compute the MAE (Table 

4) and present plots for 730-step-ahead predictions (Fig.4a – 4g). Some papers (Brügner, 2017) applied 

the Holt-winters method. 

 

Forecast Accuracy 

The mean absolute error (MAE) is adopted to judge the best prediction technique when we run the 

predictions. We use the values of the forecast to evaluate predictions with the historic data from the 

same period. The model with the least minimum errors is considered as the best prediction model.  

MAE = ∑ (�̂�𝑡+ℎ|𝑡 − 𝑦𝑡  )  𝑛⁄

𝑛

𝑡

                                                                          (8) 

The measure (�̂�𝑡+ℎ|𝑡 − 𝑦𝑡  ) =  𝑒𝑡   is the forecast error, �̂�𝑡+ℎ|𝑡  𝑖𝑠 forecasted price at time 𝑡, 𝑛 is 

the total # of observations. For the HWF, we added two additional predictions – the prediction interval 

forecast which provides uncertainty around a single (the fitted) value, i.e., the upper limit HWF(𝛾[0,1]; 

upper) and the lower limit HWF(𝛾[0,1]; lower). The HWF is done at 5% precision level. In all, we 

obtain forecast for 18 predictive models. Before we compute the MAE and determine which model best 

predict the Bitcoin price, we arbitrarily divided the actual daily Bitcoin data into training-sample (in-

sample) and test-sample (out-sample) periods. In line with Munim et al. (2019), we consider predictions 

for the two different training-samples and tests-samples.  

We apply a library(forecast) and library(fpp) in RStudio software for the estimation. The R 

programme reports ARIMA(p, d, q), but we follow textbook liturgy and report our result as 

ARIMA(p,q,d) earlier defined. For the ARIMA(auto) model, the auto.arima() function returns the best 

ARIMA model, based on either Akaike Information Criterion (AIC), corrected Akaike Information 

Criterion (AICc) or Bayesian information criterion (BIC) value. The estimation is done with log-

likelihood (LL) method. We adopt Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) to decide the parameter (p,q,d) for the ARIMA(fix) model. We employ the 

HoltWinter() function to obtain the parameters of HWF. The HoltWinter() [*, *] reports upper and lower 

limits, based on the predictions interval.  

 

Data 

We use daily closing price of Bitcoin between 01 Sept., 2014 and 28 Dec., 2020. This period is chosen 

putting into consideration the large volume of transactions in the bitcoin and the pattern of price 

movements that occurred during these dates. Unlike some machine learning studies (McNally et al., 

2018; Mallqui, 2019) that show forecast for bitcoin returns, we focus on bitcoin price according to 

Munim et al. (2019). We filter the daily series and eliminate data for leap years (29\02\2016 and 

29\02\2020) which may interruption the consistency and unification of data frequency of 365/year 

during estimation. The data which covers 2309 days is sourced from Blockchain.com (01\09\2014 – 

14\09\2014) and Finance.yahoo.com (15\09\2014 – 28\12\20). 

 

Results 

Statistical Description 

Fig.1a shows the plot of daily bitcoin price, 𝑦𝑡 (full sample). The price hits above $700 in 2014 but 

would later fall. In same year a leading Bitcoin exchanges (Mt. Gox) which controls about 70% 

transactions globally was reportedly hacked and a total of 850,000 BTCs own by customers were stolen. 

The exchange suspended trading activities and the incident pose lack of confidence on the security of 

Bitcoin exchange.  Hence, the price dropped and stood at $434 at 2015 end. Bitcoin experience 

spectacular price increase in 2017 to an all-time high of $19,483.06 on 18 December, 2017, but later 

dropped to $12,616.64 on Dec., 23. The price decline continued during 2018 and 2019 below its 2017 

peak, but experience a full recovery from previous peak by Dec., 2020. The price has shown a trajectory 

path of a close reverse L-shape pattern between 2014 and 2018. The shape would later turn an omega 

𝜔 – an indication of drastic fall and recovery between 2017 peak and Dec., 2020. A cursory look at the 

plot shows the data may not be stationary, as would be later confirmed. The plots of difference (Fig.1b) 

and log-differences (Fig.1c) show large volatility clustering around zero with notable outliers.  
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Table 1 presents the statistical properties of Bitcoin price data. The standard deviations of the 

price indicate higher spread in the full sample than in the training and test samples. The distributions of 

all the series are asymmetric (positively skewed), although the full sample is less skewed as compare 

to the sub-samples. Both the test-sample and full-sample appear to be mesokurtic (moderately peaked), 

while the training sample is leptokurtic (high peaked). The Jarque-Bera values for all series are 

significant, rejecting the normality null. 

We observe that the ERS test statistics for the training dataset confusingly signals stationarity, 

but this was dislodged when linear trend was incorporated. The 𝐸𝑅𝑆𝛼 statistics suggest we accept the 

test null of non-stationarity since ττ > 𝐸𝑅𝑆𝛼, with or without trends inclusion in the test equation. With 

the all the KPSS, we reject the test null of stationarity as the test are highly significance at 1%. Hence, 

all results confirm non-stationarity for the training-, test- and full sample for all data frequencies.  For 

the first difference series of bitcoin price, we reject the null (of non-stationarity) for the DF-GLS test, 

and accept the null of stationarity for the KPSS test, both at 1% and 5%. This indicates the bitcoin price 

is integrated order of one, I(1). 

 

Generalise (Polynomial and STL) Functions 

The actual series depicted by Fig.1a looks chaotic, and for prediction purpose we estimate the 

polynomial and STL functions. For the polynomial model, we obtain 𝜓0 = 7.784e+08, 𝜓1 =
− 7.741e+05 and 𝜓2 =1.925e+02. The fitted values, �̂�𝑝 =7.784e+08− 7.741e+05𝑇 + 1.925e+02𝑇2 , 

was plotted (the purple line in Fig.3a) which would be later use for predictions. Fig.2 shows how the 

SLT decompose the actual data (topmost graph) into key time-series components. We observe that the 

trend is explosives, the remainder is convergence and mean reversing, and the seasonality is both 

oscillatory and stable around it zero mean. For STL split, we adopt the STL Trend (third line) for 

prediction purpose.  

Figure 3a shows a plot of the Actual data, STL-Trend and Polynomial function of BTC price. 

The actual function looks chaotic, nonlinear with spiky striations. The Polynomic function is so general 

and simple that its prediction smooths the actual data. For nonlinear series, Lahmiri et al. (2018) suggest 

a log-transformed comparism to obtain suitable estimates. Figure 3b presents an analogous logarithmic 

transformation plot. Unlike the level form and as it would be expected, the log-transformation exhibits 

similar nonlinear but relative smooth striations with protrusions in periods of price peaks. 

 

Estimated ARIMA and HWF Models 

The study aims to find a model that enables more accurate prediction of daily bitcoin price. To do this, 

we find the order of the ARIMA model and the HWF optimal smoothing parameters for the forecast 

models. The Table 3 shows the appropriate order chosen for the Polynomial, STL and Actual series are 

ARIMA(0,5,2), ARIMA(0,0,2) and ARIMA(5,2,2), respectively. These orders are applied to construct 

the ARIMA forecast models and for the prediction of the three Bitcoin price functions. These HWF 

parameters, 𝛼, 𝛽 and 𝛾 are presented for the STL, Polynomial and Actual functions. The parameter 

would be applied to construct the Holt-Winters models and predict Bitcoin price for 730 days, until 27-

12-2023. The forecast interval is shown for the polynomial, STL-trend and Actual data. 
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Discussions 

We check the model’s performance and decide the model suitable for predicting the Bitcoin price. For 

cross-validation, we arbitrarily split the actual Bitcoin data into two different training-samples and test-

samples. While there is no theoretical underpinning in choosing the sample duration, we are concern 

about the pattern the bitcoin plots (Fig.1a) formed overtime. We introspect the pattern formed choose 

the periods from 01\09\14 to 18\12\17 (1205 days) as first training-sample. The first test-sample data 

range from 19\12\17 – 28\12\2020, with 1104 days. The second training-sample is considered from 

01\09\14 to 30\06\19 (1764 days), with test-sample data set of 01\07\19 – 28\12\2020 (545 days). We 

compare the computed MAE for 18 models, and adjudge the one with the least MAE as best predictor. 

Table 4 shows that although the HWF(𝛾 [0,1]; lower-limit) for the STL-trend provides the best 

prediction on the first training-sample with the smallest MAE of $1586.408, but the MAE of $1005.855 

for the ARIMA on the actual function outperform it in the second training-sample. The discussion show 

that the Holt-Winters model is more appropriate for prediction of the daily bitcoin price with STL-trend 

as the time series, while ARIMA(fix) model provide more accurate when actual data is applied. 

Fig. 4a-4g show the predictions for the models.  The black lines represent actual data function, 

red represents the STL-Trend, and purple represents the polynomial function. Each prediction line is 

identified by the legend on the plots. The other two variants of green lines “yellow green” and “green4” 

are for the HWF(𝛾[0,1]; upper limit)  and HWF(𝛾[0,1]; lower limit) prediction interval, respectively. 

Fig.4a shows the predictions for the polynomial function. The plot shows that with the polynomial 

series, the predictions are closed within similar interval with little precisions. The various prediction is 

within regions that are not too different from each other. The predictions are closed because the 

polynomial function is very general, simple and hence influence the prediction with similar techniques. 

This changes when same prediction models are applied for STL-Trend and Actual function. Fig. 4b and 

4c present predictions for the STL-Trend based and Actual function, respectively.  Both plots show 

quite different predictions values for the future with larger variability for the predictions when compare 

with Fig 4a. Fig. 4d, 4f and 4g, respectively show plots for all predictions in level form with predictions 

interval (shaded regions) based on actual, polynomial and STL-trend functions of the bitcoin price. 

Fig.4e show plot for predictions for log-transform with predictions based on STL-trend function of the 

full-sample of the Bitcoin price.  
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Implications 

The study predicts daily bitcoin prices using observed data, and datasets from constructed 

generalise functions based on pattern exhibited by the price fluctuations. Because of markets 

information asymmetric, increasing economic uncertainties, erratic behaviours of cryptocurrency 

miners and other markets dynamics, adopting a predictive model to understand the directions and 

possible predictable value of Bitcoins is important. Hence, the findings of this study have some 

significant implications for Bitcoin, cryptocurrency and general financial markets, as well as for 

research in the field of empirical finance.  

First, the results provide guide for investors to make informed decisions when considering 

investment in the cryptocurrency market given the excessive volatile nature of Bitcoin. Accurate 

predictions minimize potential losses-risks for investors, traders and users. Bitcoin has attracted 

stakeholders, including individual and institutional investors since its inventions. We suppose that the 

model completed offer best accurate price forecasts for Bitcoin. Second, the forecast models has 

implications to drive asset allocations. Our optimal model offers warnings signals to financial markets 

investors in order circumvent massive losses from sporadic volatility in the price. Asset managers may 

want to avoid potential risk by adopting least error forecast models to predict likely direction and value 

of the Bitcoin price. Since Bitcoin is now becoming save haven, and possible substitute for other 

traditional assets, and commodities (Kliber et al., 2019), the predictive models. Lastly, the findings offer 

significant implication in empirical finance, particularly to researchers interested in the bitcoin and 

cryptocurrency. Extant attempt at Bitcoin price predictions focused on the use of observed data. Actual 

data is too noisy and increases the risk of inaccurate predictions. Hence, a generalised function 

transformation offers better predictions as our result supposed. Our functions can be applied to construct 

hybrid models for future price forecast.  

 

Conclusions 

The sporadic nature of Bitcoin price has prompted attempts to forecast its daily future price 

(Munim et al.., 2019; Chen et al., 2020; Hung et al., 2020). We establish accurate forecast models that 

better predict the price of Bitcoin. The is done by considering the model with the least value of MAE 

for the actual daily bitcoin price, and two generalised (polynomial and STL) functions adopted to 

forecast the time-series. We establish that although the Holt-Winters Filter with trend and additive 

seasonality use on the STL-trend HWF(𝛾[0,1]; lower limit) provides the best prediction on the first 

training-sample with the smallest MAE of 1586.408, but when validated with the MAE of 1005.855 of 

the ARIMA(fix) model applied on the Actual function in the second training-sample, the later 

outperform the former. The results show that the Holt-Winters model is more appropriate for prediction 

of the daily price of Bitcoin with STL-trend as the time-series, while ARIMA(fix) model provide more 

accurate when actual data is applied. This finding would serve as a guide to investors, traders, regulators 

and other participants in the cryptocurrency market. 
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Appendix 

R Scripts 

read.csv("BTC.csv", header= T) #Read in data 

BTC <- read.csv("BTC.csv", header= T) 

tsBTC <- ts(BTC, start = c(2014, 243), frequency = 365) 

t1 <- seq(2014, 2020, length = length(tsBTC))#Estimating a polynomial model from the actual data 

t12 <- t1^2 

PolyBTC <- lm(tsBTC ~ t1 + t12) #Polynomial model 

tsBTCtrend1 <- ts(PolyBTC$fit, start = c(2014, 243), frequency = 365) 

stlBTC <- stl(tsBTC[,1], s.window ="periodic") #STL decomposition 

Prediction Functions 

autofit1 <- auto.arima(tsBTCtrend1) 

fitA1 <- arima(tsBTCtrend1, order=c(3,3, 3))  

HWBTC1_ng <- HoltWinters(tsBTCtrend1, gamma = FALSE) 

HWBTC1 <- HoltWinters(tsBTCtrend1) 

autofit2 <- auto.arima(tsBTCtrend2) 

fitA2 <- arima(tsBTCtrend2, order=c(1, 3, 1))  

HWBTC2_ng <- HoltWinters(tsBTCtrend2, gamma = FALSE) 

HWBTC2 <- HoltWinters(tsBTCtrend2) 

autofitr <- auto.arima(tsBTC) 

fitAr <- arima(tsBTC, order=c(4, 3, 2)) 

HWBTCr_ng <- HoltWinters(tsBTC, gamma = FALSE) 

HWBTCr <- HoltWinters(tsBTC) 

Combination all competing models 

plot(forecast(autofit1, h=730), ylim =c(0, 35000), col= "purple")  

lines(forecast(fitA1, h=730)$mean, lw=2, col= "blue") 

lines(predict(HWBTC1_ng, n.ahead = 730), lw=2, col= "pink") 

lines(predict(HWBTC1, n.ahead = 730, prediction.interval = T, level = 0.95)[, 1], lw=2, col= "green") 

lines(predict(HWBTC1, n.ahead = 730, prediction.interval = T, level = 0.95)[, 2], lw=2, col= "green4") 

lines(predict(HWBTC1, n.ahead = 730, prediction.interval = T, level = 0.95)[, 3], lw=2, col= "yellowgreen") 

lines(forecast(autofit2, h=730)$mean, lw=2, col= "grey15") 

lines(forecast(fitA2, h=730)$mean, lw=2, col= "blue") 

lines(predict(HWBTC2_ng, n.ahead = 730), lw=2, col= "pink") 

lines(predict(HWBTC2, n.ahead = 730, prediction.interval = T, level = 0.95)[, 1], lw=2, col= "green") 

lines(predict(HWBTC2, n.ahead = 730, prediction.interval = T, level = 0.95)[, 2], lw=2, col= "green4") 

lines(predict(HWBTC2, n.ahead = 730, prediction.interval = T, level = 0.95)[, 3], lw=2, col= "yellowgreen") 

lines(forecast(autofitr, h=730)$mean, lw=2, col= "grey15") 

lines(forecast(fitAr, h=730)$mean, lw=2, col= "blue") 

lines(predict(HWBTCr_ng, n.ahead = 730), lw=2, col= "pink") 

lines(predict(HWBTCr, n.ahead = 730, prediction.interval = T, level = 0.95)[, 1], lw=2, col= "green") 

lines(predict(HWBTCr, n.ahead = 730, prediction.interval = T, level = 0.95)[, 2], lw=2, col= "green4") 

lines(predict(HWBTCr, n.ahead = 730, prediction.interval = T, level = 0.95)[, 3], lw=2, col= "yellowgreen") 

abline(v=2017.97, lty=3, lw=1, col= "brown") 

abline(v=2019.5, lty=3, lw=1, col= "brown") 

abline(v=2020.99, lty=3, lw=1, col= "brown") 

lines(tsBTC, lw=1, col= "black") 

lines(tsBTCtrend2, lw=2, col= "red") 

Predictions and computation of MAE 

   train <- window(tsBTC, end = 2017.97); 

   test <- window(tsBTC, start = 2017.97) 

   autofitr <- auto.arima(train) 

   fitAr <- arima(train, order=c(4, 3, 2))  

   HWBTCr_ng <- HoltWinters(train, gamma = FALSE) 

   HWBTCr <- HoltWinters(train) 

   for (i in 1:length(test)) 
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      {  

      mae[1,i] <- abs(predautofit1[i] - test [i]) 

      mae[2,i] <- abs(predfitA1[i] - test [i]) 

      mae[3,i] <- abs(predHWBTC1_ng[i] - test [i]) 

      mae[4,i] <- abs(predHWBTC1[i] - test [i]) 

      mae[5,i] <- abs(predHWBTC11[i] - test [i]) 

⋮ ⋮ ⋮ ⋮ 
      mae[15,i] <- abs(predHWBTCr_ng [i] - test [i]) 

      mae[16,i] <- abs(predHWBTCr[i] - test [i]) 

      mae[17,i] <- abs(predHWBTCr1 [i] - test [i]) 

      mae[18,i] <- abs(predHWBTCr2 [i] - test [i]) 

  


